Comprehensive guide to steam sterilization and sterility assurance in health care facilities

This is a preview edition of an AAMI guidance document and is intended to allow potential purchasers to evaluate the content of the document before making a purchasing decision.

For a complete copy of this AAMI document, contact AAMI at (877) 249-8226 or visit www.aami.org.
Objectives and uses of AAMI standards and recommended practices

It is most important that the objectives and potential uses of an AAMI product standard or recommended practice are clearly understood. The objectives of AAMI’s technical development program derive from AAMI’s overall mission: the advancement of medical instrumentation. Essential to such advancement are (1) a continued increase in the safe and effective application of current technologies to patient care, and (2) the encouragement of new technologies. It is AAMI’s view that standards and recommended practices can contribute significantly to the advancement of medical instrumentation, provided that they are drafted with attention to these objectives and provided that arbitrary and restrictive uses are avoided.

A voluntary standard for a medical device recommends to the manufacturer the information that should be provided with or on the product, basic safety and performance criteria that should be considered in qualifying the device for clinical use, and the measurement techniques that can be used to determine whether the device conforms with the safety and performance criteria and/or to compare the performance characteristics of different products. Some standards emphasize the information that should be provided with the device, including performance characteristics, instructions for use, warnings and precautions, and other data considered important in ensuring the safe and effective use of the device in the clinical environment. Recommending the disclosure of performance characteristics often necessitates the development of specialized test methods to facilitate uniformity in reporting; reaching consensus on these tests can represent a considerable part of committee work. When a drafting committee determines that clinical concerns warrant the establishment of minimum safety and performance criteria, referee tests must be provided and the reasons for establishing the criteria must be documented in the rationale.

A recommended practice provides guidelines for the use, care, and/or processing of a medical device or system. A recommended practice does not address device performance per se, but rather procedures and practices that will help ensure that a device is used safely and effectively and that its performance will be maintained.

Although a device standard is primarily directed to the manufacturer, it may also be of value to the potential purchaser or user of the device as a frame of reference for device evaluation. Similarly, even though a recommended practice is usually oriented towards healthcare professionals, it may be useful to the manufacturer in better understanding the environment in which a medical device will be used. Also, some recommended practices, while not addressing device performance criteria, provide guidelines to industrial personnel on such subjects as sterilization processing, methods of collecting data to establish safety and efficacy, human engineering, and other processing or evaluation techniques; such guidelines may be useful to health care professionals in understanding industrial practices.

In determining whether an AAMI standard or recommended practice is relevant to the specific needs of a potential user of the document, several important concepts must be recognized:

All AAMI standards and recommended practices are voluntary (unless, of course, they are adopted by government regulatory or procurement authorities). The application of a standard or recommended practice is solely within the discretion and professional judgment of the user of the document.

Each AAMI standard or recommended practice reflects the collective expertise of a committee of health care professionals and industrial representatives, whose work has been reviewed nationally (and sometimes internationally). As such, the consensus recommendations embodied in a standard or recommended practice are intended to respond to clinical needs and, ultimately, to help ensure patient safety. A standard or recommended practice is limited, however, in the sense that it responds generally to perceived risks and conditions that may not always be relevant to specific situations. A standard or recommended practice is an important reference in responsible decision-making, but it should never replace responsible decision-making.

Despite periodic review and revision (at least once every five years), a standard or recommended practice is necessarily a static document applied to a dynamic technology. Therefore, a standards user must carefully review the reasons why the document was initially developed and the specific rationale for each of its provisions. This review will reveal whether the document remains relevant to the specific needs of the user. Particular care should be taken in applying a product standard to existing devices and equipment, and in applying a recommended practice to current procedures and practices. While observed or potential risks with existing equipment typically form the basis for the safety and performance criteria defined in a standard, professional judgment must be used in applying these criteria to existing equipment. No single source of information will serve to identify a particular product as "unsafe". A voluntary standard can be used as one resource, but the ultimate decision as to product safety and efficacy must take into account the specifics of its utilization and, of course, cost-benefit considerations. Similarly, a recommended practice should be analyzed in the context of the specific needs and resources of the individual institution or firm. Again, the rationale accompanying each AAMI standard and recommended practice is an excellent guide to the reasoning and data underlying its provision.

In summary, a standard or recommended practice is truly useful only when it is used in conjunction with other sources of information and policy guidance and in the context of professional experience and judgment.

INTERPRETATIONS OF AAMI STANDARDS AND RECOMMENDED PRACTICES

Requests for interpretations of AAMI standards and recommended practices must be made in writing, to the AAMI Vice President, Standards Policy and Programs. An official interpretation must be approved by letter ballot of the originating committee and subsequently reviewed and approved by the AAMI Standards Board. The interpretation will become official and representation of the Association only upon exhaustion of any appeals and upon publication of notice of interpretation in the "Standards Monitor" section of the AAMI News. The Association for the Advancement of Medical Instrumentation disclaims responsibility for any characterization or explanation of a standard or recommended practice which has not been developed and communicated in accordance with this procedure and which is not published, by appropriate notice, as an official interpretation in the AAMI News.
Comprehensive guide to steam sterilization and sterility assurance in health care facilities

Developed by
Association for the Advancement of Medical Instrumentation

Approved 4 August 2010 by
Amendment 1 Approved 24 September 2010 by
Amendment 2 Approved 19 September 2011 by
American National Standards Institute Inc.

Abstract: This recommended practice covers steam sterilization in health care facilities. The recommendations are intended to promote sterility assurance and to guide health care personnel in the proper use of processing equipment. Included within the scope of the recommended practice are functional and physical design criteria for sterilization processing areas (decontamination, preparation, sterilization, and sterile storage areas); staff qualifications, education, and other personnel considerations; processing procedures; installation, care, and maintenance of steam sterilizers; quality control; and quality process improvement.

Keywords: ambulatory care facilities, cleaning, continuous quality improvement, decontamination, dental office, flash sterilization, moist heat sterilization, packaging, quality control, quality system, saturated steam, sterile storage, sterilization containers, surgical instruments, table-top sterilizers
AAMI Recommended Practice

This Association for the Advancement of Medical Instrumentation (AAMI) recommended practice implies a consensus of those substantially concerned with its scope and provisions. The existence of an AAMI recommended practice does not in any respect preclude anyone, whether they have approved the recommended practice or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the recommended practice. AAMI recommended practices are subject to periodic review, and users are cautioned to obtain the latest editions.

CAUTION NOTICE: This AAMI recommended practice may be revised or withdrawn at any time. AAMI procedures require that action be taken to reaffirm, revise, or withdraw this recommended practice no later than five years from the date of publication. Interested parties can obtain current information on all AAMI documents by calling or writing AAMI.

All AAMI standards, recommended practices, technical information reports, and other types of technical documents developed by AAMI are voluntary, and their application is solely within the discretion and professional judgment of the user of the document. Occasionally, voluntary technical documents are adopted by government regulatory agencies or procurement authorities, in which case the adopting agency is responsible for enforcement of its rules and regulations.

Published by
Association for the Advancement of Medical Instrumentation
4301 N. Fairfax Dr., Suite 301
Arlington, VA 22203-1633
www.aami.org

© 2011 by the Association for the Advancement of Medical Instrumentation

All Rights Reserved

Publication, reproduction, photocopying, storage, or transmission, electronically or otherwise, of all or any part of this document without the prior written permission of the Association for the Advancement of Medical Instrumentation is strictly prohibited by law. It is illegal under federal law (17 U.S.C. § 101, et seq.) to make copies of all or any part of this document (whether internally or externally) without the prior written permission of the Association for the Advancement of Medical Instrumentation. Violators risk legal action, including civil and criminal penalties, and damages of $100,000 per offense. For permission regarding the use of all or any part of this document, complete the reprint request form at www.aami.org or contact AAMI, 4301 N. Fairfax Dr., Suite 301, Arlington, VA 22203-1633. Phone: +1-703-525-4890; Fax: +1-703525-1067.

Printed in the United States of America

Contents

Glossary of equivalent standards .. ix
Committee representation .. xi
Acknowledgments .. xiii
Foreword .. xiv
Introduction: Need for the recommended practice ... 1

1 Scope .. 5
 1.1 General .. 5
 1.2 Inclusions .. 5
 1.3 Exclusions .. 5

2 Definitions and abbreviations ... 7

3 Design considerations .. 19
 3.1 General rationale ... 19
 3.2 Work area design and functional workflow .. 19
 3.2.1 Definitions of work areas .. 19
 3.2.2 Design criteria ... 20
 3.2.3 Functional workflow patterns .. 23
 3.2.4 Traffic control .. 23
 3.3 Physical facilities .. 25
 3.3.1 Space requirements .. 25
 3.3.2 Mechanical systems ... 25
 3.3.3 Electrical systems .. 25
 3.3.4 Steam for sterile processing .. 25
 3.3.5 Utility monitoring and alarm systems .. 27
 3.3.6 General area requirements ... 27
 3.3.7 Special area requirements and restrictions .. 31
 3.3.8 Emergency eyewash/shower equipment ... 34
 3.4 Housekeeping procedures .. 35

4 Personnel considerations ... 37
 4.1 General rationale .. 37
 4.2 Qualifications ... 37
 4.2.1 Supervisory personnel .. 37
 4.2.2 Sterile processing personnel .. 37
 4.3 Training and continuing education ... 38
 4.3.1 Sterile processing personnel .. 38
 4.3.2 Service personnel ... 39
 4.3.3 Other personnel ... 39
 4.4 Health and personal hygiene .. 39
 4.5 Attire ... 39
 4.5.1 General considerations .. 39
 4.5.2 Decontamination area .. 40
 4.5.3 Sterilization area (flash sterilization) .. 41
 4.5.4 Service personnel .. 41
 4.6 Standard/transmission-based precautions ... 41

5 Receiving .. 43
 5.1 General rationale .. 43
 5.2 Receiving of purchased or loaner items ... 43
 5.2.1 General considerations .. 43
 5.2.2 Newly purchased reusable items and repaired reusable items .. 43
 5.2.3 Rigid sterilization container systems .. 43
 5.2.4 Disposable items ... 44
 5.3 Disposition of sterile items (issued but not used) .. 44
6 Handling, collection, and transport of contaminated items .. 47
 6.1 General rationale .. 47
 6.2 Separation of waste and reusable items at point of use ... 47
 6.3 Care and handling of contaminated reusable items at point of use 47
 6.4 Containment .. 48
 6.5 Transport .. 49
 6.5.1 Segregation of clean/sterile items .. 49
 6.5.2 Transportation scheduling and routes ... 49
 6.5.3 Transportation equipment .. 49
 6.5.4 Hand transport .. 49
 6.5.5 Dedicated lifts ... 49
 6.5.6 Transport between buildings .. 49
 6.5.7 Off-site transportation ... 50
7 Cleaning and other decontamination processes... 53
 7.1 General rationale ... 53
 7.2 Policies, procedures, and manufacturers’ written IFU ... 53
 7.2.1 Policies and procedures ... 53
 7.2.2 Manufacturers’ written IFU ... 53
 7.3 Presoaking .. 54
 7.4 Disassembly ... 54
 7.4.1 Sorting and disassembly of instrumentation ... 54
 7.4.2 Disassembly of rigid sterilization container systems ... 54
 7.5 Cleaning ... 55
 7.5.1 General considerations ... 55
 7.5.2 Cleaning agents .. 55
 7.5.3 Methods of cleaning .. 56
 7.5.4 Rinsing .. 58
 7.5.5 Verification of the cleaning process .. 58
 7.5.6 Cleaning of instruments ... 58
 7.5.7 Utensils ... 59
 7.5.8 Reusable textiles ... 59
 7.5.9 Rigid sterilization container systems ... 60
 7.6 Microbicidal processes .. 60
 7.6.1 General considerations ... 60
 7.6.2 Processes to decontaminate devices so that they are safe to handle 61
 7.6.3 Terminal sterilization processes to prepare devices for the next patient use 63
 7.7 Servicing and repair of devices in the health care facility ... 64
 7.7.1 General considerations ... 64
 7.7.2 Potential for exposure .. 64
 7.7.3 Protective measures for service personnel ... 65
 7.7.4 Postexposure program ... 65
 7.7.5 Devices that cannot be repaired in-house ... 65
8 Packaging, preparation, and sterilization ... 67
 8.1 General rationale ... 67
 8.2 Selection of packaging materials ... 67
 8.3 Package configurations and preparation .. 67
 8.3.1 General considerations ... 67
 8.3.2 Package labels .. 68
 8.3.3 Package closures ... 68
 8.3.4 Paper–plastic pouches ... 73
 8.3.5 Textile packs ... 73
 8.3.6 Basins and basin sets ... 74
 8.3.7 Surgical supplies ... 75
 8.3.8 Devices with lumens ... 75
 8.4 Preparation and assembly of surgical instrumentation .. 75
 8.4.1 General considerations ... 75
 8.4.2 Weight and density of sets ... 75
 8.4.3 Inspection ... 76
 8.4.4 Instrument placement ... 76
10.5.3 Biological indicators ... 104
10.5.4 Process challenge devices (PCDs) .. 105
10.6 Routine load release ... 106
10.6.1 Process monitoring devices ... 106
10.6.2 Release criteria for nonimplants .. 107
10.6.3 Release criteria for implants ... 107
10.6.4 Sterilization process failures ... 107
10.7 Routine sterilizer efficacy monitoring ... 108
10.7.1 General considerations .. 108
10.7.2 Routine biological monitoring of sterilizers larger than 2 cubic feet .. 108
10.7.3 Routine biological monitoring of table-top sterilizers 111
10.7.4 Routine biological monitoring of flash sterilization cycles 112
10.7.5 Actions to be taken when biological indicators, chemical indicators, or physical monitors indicate failure .. 114
10.7.6 Routine Bowie-Dick testing of dynamic-air-removal sterilizers 119
10.8 Qualification testing ... 122
10.8.1 General considerations .. 122
10.8.2 Qualification testing of sterilizers larger than 2 cubic feet 123
10.8.3 Qualification testing of table-top sterilizers 125
10.8.4 Qualification testing of flash sterilization cycles 126
10.9 Periodic product quality assurance testing of routinely processed items 127
10.10 Periodic product quality assurance testing of rigid sterilization container systems 128
10.10.1 General considerations .. 128
10.10.2 Responsibilities of the manufacturer ... 128
10.10.3 User responsibilities ... 130
10.11 Product recalls .. 135
10.11.1 General considerations .. 135
10.11.2 Recall procedure .. 136
10.11.3 Recall order .. 136
10.11.4 Recall report .. 136
11 Quality process improvement ... 139
11.1 General rationale .. 139
11.2 Quality process ... 139
11.2.1 General considerations .. 139
11.2.2 Risk analysis .. 140
11.2.3 Decontamination .. 140
11.2.4 Rigid sterilization container systems .. 141
11.2.5 Flash sterilization .. 142
11.3 Functional areas for product and process improvements 143
11.3.1 Workplace design ... 143
11.3.2 Processing policies and procedures .. 143
11.3.3 Product use ... 143
11.4 Implementing product and process improvements 144
12 New product evaluation .. 147
12.1 General rationale .. 147
12.2 Considerations .. 147

Annexes

A Examples of workplace design ... 151
B Infection transmission .. 159
C Processing CJD-contaminated patient care equipment and environmental surfaces 163
D User verification of cleaning processes .. 169
E Selection and use of chemical disinfectants 175
F Thermal disinfection .. 181
G Devices returned to the manufacturer ... 183
H Occupational exposure to blood-borne pathogens (29 CFR Part 1910.1030) .. 191
I Development of a prepurchase evaluation protocol for rigid sterilization container systems 207
J Effect of containerized packaging on load heat-up time .. 213
K Development and qualification of the 16 towel PCD (biological-indicator challenge test pack) 215
L Example of documentation of premature release of implants ... 225
M Steam quality ... 227
N Toxic anterior segment syndrome (TASS) and the processing of intraocular surgical instruments 229
O Bibliography ... 233

Tables

1 Saturated steam pressure conversion units at sea level .. 13
2 Ventilation requirements for functional areas ... 28
3 IES-recommended illuminance levels for work environments ... 30
4 Minimum cycle times for gravity-displacement steam sterilization cycles .. 82
5 Minimum cycle times for dynamic-air-removal steam sterilization cycles .. 83
6 Sterilization process monitoring recommendations ... 100
7 Types and applications for use of sterilization monitoring devices ... 101
8 Checklist for identifying reasons for steam sterilization process failures .. 117
9 Summary of test configurations for prepurchase evaluation of rigid sterilization container systems 132
D.1 In-use tests available to assess efficacy of cleaning of medical devices ... 172
D.2 In-use tests available to assess efficacy of washer-disinfectors used for medical device reprocessing .. 173
E.1 Levels of disinfection according to type of microorganism ... 177
E.2 Occupational exposure limits for some chemical sterilants and disinfectants 180
K.1 16 towel pack survey ... 216
K.2 Biological-indicator results from 121°C (250°F) gravity cycle .. 218
K.3 Biological-indicator results from 132°C (270°F) deep-vacuum cycle .. 219
K.4 Biological-indicator results from 132°C (270°F) pulsing vacuum cycle ... 220
K.5 Comparison of the 16 towel pack with the 12 × 12 × 20 inch pack by Most Probable Number and sterility assessment of spore strips (121°C [250°F] gravity cycle) .. 221
K.6 Fraction-negative results in a 121°C (250°F) gravity cycle ... 221
K.7 Biological-indicator results from 121°C (250°F) steam-flush pressure-pulse cycle 222
K.8 Biological-indicator results from 132°C (270°F) steam-flush pressure-pulse cycle 222

Figures

1 Functional work areas of a sterile processing department .. 20
2 Workflow .. 24
3 Microbicidal processes and use of PPE .. 61
4 Sequential double-wrapping: envelope fold .. 69
Glossary of equivalent standards

International Standards adopted in the United States may include normative references to other International Standards. For each International Standard that has been adopted by AAMI (and ANSI), the table below gives the corresponding U.S. designation and level of equivalency to the International Standard. NOTE: Documents are sorted by international designation. The code in the US column, “(R)20xx” indicates the year the document was officially reaffirmed by AAMI. E.g., ANSI/AAMI/ISO 10993-4:2002(R)2009 indicates that 10993-4, originally approved and published in 2002, was reaffirmed without change in 2009.

Other normatively referenced International Standards may be under consideration for U.S. adoption by AAMI; therefore, this list should not be considered exhaustive.

<table>
<thead>
<tr>
<th>International designation</th>
<th>U.S. designation</th>
<th>Equivalency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Corrigendum 1 and 2</td>
<td>ANSI/AAMI ES60601-1:2005/C1:2009 (amdt)</td>
<td>C1 Identical to Corrigendum 1 & 2</td>
</tr>
<tr>
<td>Amendment 1:2006</td>
<td>Amendment 1:2006(R)2009</td>
<td>Amendment 1:2006/(R)2009</td>
</tr>
</tbody>
</table>

© 2011 Association for the Advancement of Medical Instrumentation ■ ANSI/AAMI ST79:2010 & A1 & A2
<table>
<thead>
<tr>
<th>International designation</th>
<th>U.S. designation</th>
<th>Equivalency</th>
</tr>
</thead>
</table>

This is a preview edition of an AAMI guidance document and is intended to allow potential purchasers to evaluate the content of the document before making a purchasing decision.
Committee representation

Association for the Advancement of Medical Instrumentation

Steam Sterilization Hospital Practices Working Group

This recommended practice was developed by the AAMI Steam Sterilization Hospital Practices Working Group under the auspices of the AAMI Sterilization Standards Committee. Approval of the recommended practice does not necessarily mean that all working group members voted for its approval.

At the time this recommended practice was published, the AAMI Steam Sterilization Hospital Practices Working Group had the following members:

Cochairs:
- Ramona Conner, RN, MSN, CNOR
- Cynthia Spry, RN, MSN, CNOR

Members:
- Richard Bancroft, Esq, Steris Corporation
- Ralph J. Basile, MBA, Healthmark Ind Co Inc
- Nola Bayes, MBA, Sanford Health
- Damien Berg, Medical Center of the Rockies
- Hassan Bilal, CRCST, CST Member Independent Expert
- Loran H. Bruso, BS MBA, Steritec Products Manufacturing Co. Inc.
- Kathy M. Bury, INOVA Alexandria Hospital
- Bradley J. Bushman, Standard Textile Co. Inc.
- Mike Carragher, Getinge USA
- Edward P. Casey, CSPDM, The Hospital of Central Connecticut
- Bradley J. Catalone, PhD, Olympus America Inc.
- Harriet Chai-Mayers, Johnson & Johnson
- David Chapman, Roche Molecular Systems
- Marc Chauner, TSO3 Inc.
- Nancy Chobin, RN, CSPDM, St. Barnabas Health Care System
- Ramona Conner, RN, MSN, CNOR, Association of Perioperative Registered Nurses
- Jacqueline Daley, Association for Professionals in Infection Control and Epidemiology
- Diana Davis, Brunswick Community Hospital
- Michele Dawn Demeo, CRCST, CSPDT, Memorial Hospital
- Shawn A. Doyle, Sterilator Company Inc.
- Mark Duro, New England Baptist Hospital
- Betty D. Edge, Northshore University Hospital
- Rosie Fardo, RN, BSN, CIC, CHSP, Department of Veterans Affairs Medical Center
- Jeff Felgar, Zimmer Inc.
- Marcia Ann Frieze, Case Medical Inc.
- Charles Oren Hancock, RAC, H&W Technology LLC
- Barbara Ann Harmer, RN, BSN, MHA
- Jennifer Harte, DDS, MS, American Dental Association
- Rachel Hill, CareFusion
- Charles A. Hughes, SPS Medical Supply Corp
- David M. Jagrosse, Middlesex Hospital
- Nupur Jain, Stryker Instruments Division
- Nyla Skee Japp, PhD, RN, CSPDM, Integrated Medical Systems
- David W. Johnson, Kimberly-Clark Corporation
- Susan G. Klacik, CCSMC, FCS, ACE, International Association of Healthcare Central Service Materiel Management
- Colleen Patricia Landers, RN, Canadian Standards Association
- Mary Kneecie Lane, BS, MHA, CSPDS, CSPDM, The Medical University of South Carolina
- Angela M. Lewellyn, LPN, CSPDT, CRCST, Advantage Support Services, Inc.
- Chris Mannarino, Belmed Inc.
- Teckla A. Maresca, LPN, CSPDM, St. Clare's Health System
- Ruby Martinez, Cardinal Health (MP&S)
- Patrick J. McCormick, PhD, Bausch & Lomb Inc.
- Candace McManus, PhD, FDA/CDRH
- Emily Mitzel, MS, Nelson Laboratories Inc.
- Thomas K. Moore
- Karen Nauss, CRCST, Mount Auburn Hospital
- Scott Pignatella

© 2011 Association for the Advancement of Medical Instrumentation ■ ANSI/AAMI ST79:2010 & A1 & A2
NOTE—Participation by federal agency representatives in the development of this recommended practice does not constitute endorsement by the federal government or any of its agencies.
Acknowledgments

The AAMI Steam Sterilization Hospital Practices Working Group gratefully acknowledges the important contributions of both current and former Working Group members, who have been instrumental in preparing the first edition of this document, the 2008 and 2009 amendments, and this editorial revision, which offers users a comprehensive document on steam sterilization practices. The continuous maintenance process, which keeps this document current, demands a great deal of Working Group members' time, and all involved have willingly donated their time and expertise. The Working Group also gratefully acknowledges Judy Veale, the AAMI staff liaison who was invaluable in keeping this document, and the Working Group, on track through the amendment and revision process.
Foreword

This recommended practice was developed by the Steam Sterilization Hospital Practices Working Group of the AAMI Sterilization Standards Committee. The purpose of the guidelines in this document is to help ensure the steam sterilization of products in health care facilities and the maintenance of the sterility of processed items until the point of use.

To facilitate user access to all AAMI consensus recommendations for steam sterilization in health care facilities, the first edition of ANSI/AAMI ST79, published in 2006, consolidated into one comprehensive guide the following AAMI recommended practices:

- ANSI/AAMI ST46, Steam sterilization and sterility assurance in health care facilities
- ANSI/AAMI ST42, Steam sterilization and sterility assurance using table-top sterilizers in office-based, ambulatory-care medical, surgical, and dental facilities
- ANSI/AAMI ST37, Flash sterilization: Steam sterilization of patient care items for immediate use
- ANSI/AAMI ST35, Safe handling and biological decontamination of medical devices in health care facilities and in nonclinical settings
- ANSI/AAMI ST33, Guidelines for the selection and use of reusable rigid sterilization container systems for ethylene oxide sterilization and steam sterilization in health care facilities

In the course of the consolidation process, the five recommended practices listed above were updated and revised to reflect current good practice, and several annexes were added to provide additional information to users. The recommended practice serves as a comprehensive guideline for all steam sterilization activities in health care facilities, regardless of the size of the sterilizer or the size of the facility, and provides a resource for all health care personnel who use steam for sterilization.

In 2008 and 2009, numerous amendments of the document were adopted as part of the AAMI continuous maintenance process. These amendments addressed such topics as toxic anterior segment syndrome (TASS), paper–plastic pouches, steam quality, devices with lumens, chemical indicators, sterilization process failures, product families, evaluation of sterilization container systems, risk analysis, and verification of cleaning. This second edition of ANSI/AAMI ST79 incorporates these amendments, as well as additional changes in the provisions regarding steam quality. In addition, the document reflects general editorial revisions (e.g., updating of references).

This recommended practice reflects the conscientious efforts of health care professionals, in cooperation with medical device and equipment manufacturers, to develop recommendations for optimum performance levels in the processing of reusable medical devices to be steam sterilized. It is not intended that these recommendations be construed as universally applicable in all circumstances. Also, it is recognized that in many cases these recommendations might not be immediately achievable. Therefore, the document should be used to guide personnel towards desirable performance objectives, and all of its provisions should be considered and applied in the light of professional judgment and experience.

As used within the context of this document, “shall” indicates requirements strictly to be followed to conform to the recommended practice. “Should” indicates that among several possibilities one is recommended as particularly suitable, without mentioning or excluding others, or that a certain course of action is preferred but not necessarily required, or that (in the negative form) a certain possibility or course of action should be avoided but is not prohibited. “May” is used to indicate that a course of action is permissible within the limits of the recommended practice. “Can” is used as a statement of possibility and capability. Finally, “must” is used only to describe “unavoidable” situations, including those mandated by government regulation.

The provisions of this recommended practice should be reviewed routinely by departmental managers and adapted to the needs of their particular institutions. Written policies and procedures should be developed and implemented in consultation with appropriate hospital committees (e.g., safety, infection prevention and control, and hazardous materials).

The concepts incorporated in this recommended practice should be considered flexible and dynamic. The recommendations set forth in this document are reviewed and updated periodically to assimilate progressive technological developments. AAMI policies and procedures require that AAMI standards and recommended practices be reviewed and, if necessary, revised at least once every five years.
AAMI has created a notification registry that will send e-mail announcements when amendments are issued to the recommended practice. To register, visit http://www.aami.org/standards/st79.registry.html. Suggestions for improving this recommended practice are invited. Comments or proposals for revisions to any part of the standard may be submitted to AAMI at any time. Written comments are to be sent to: Standards Dept., AAMI, 4301 N. Fairfax Dr., Suite 301, Arlington, VA 22203-1633. Comments may also be e-mailed to: standards@aami.org.

NOTE—This foreword does not contain provisions of the AAMI recommended practice, Comprehensive guide to steam sterilization and sterility assurance in health care facilities (ANSI/AAMI ST79:2010, A1:2010, and A2:2011), but it does provide important information about the development and intended use of the document.

Background on Amendments

This document consolidates the text of ST79:2010 and A1:2010 and A2:2011. The 2010 edition and amendment 1 were published together as a single document. Please see amendment 2 to identify exactly what has changed. Amendment 2 shows modifications to ST79 in redline/strikeout and is available in print or as a free PDF at http://marketplace.aami.org.

This is a preview edition of an AAMI guidance document and is intended to allow potential purchasers to evaluate the content of the document before making a purchasing decision.

For a complete copy of this AAMI document, contact AAMI at (877) 249-8226 or visit www.aami.org.
This is a preview edition of an AAMI guidance document and is intended to allow potential purchasers to evaluate the content of the document before making a purchasing decision.

For a complete copy of this AAMI document, contact AAMI at (877) 249-8226 or visit www.aami.org.
Comprehensive guide to steam sterilization and sterility assurance in health care facilities

Introduction: Need for the recommended practice

Overview:

Saturated steam under pressure is one of the oldest methods used in health care facilities to sterilize medical devices. Because this method has been available for so many years, it is thought to be a simple process, one that is well understood and controlled. However, the efficacy of any sterilization process, including saturated steam, depends on a consistent system for lowering and limiting bioburden before sterilization, properly preparing items for sterilization, selecting the appropriate sterilization parameters, and establishing and implementing controls to maintain the sterility of sterilized items until they are used. These four phases are critically interdependent, and each must be accomplished to produce and maintain a sterile product.

The delivery of sterile health care products for use in patient care depends not only on the efficacy of the sterilization process itself but also on the following factors:

a) efficient facility design,
b) proper training of personnel,
c) good infection prevention and control practices designed to prevent health-care-associated infections,
d) effective quality control and process improvement systems that encompass all aspects of device reprocessing from point of use through sterilization to reuse, and
e) appropriate documentation and reporting practices that enable traceability of each facility-sterilized medical device to the patient on whom it was used.

Health care facilities differ in their physical design and equipment and in the level of personnel expertise, competence, and training. This recommended practice has been developed to set forth guidelines for facility design, work practices, and process controls that will help ensure that sterile items are consistently produced using saturated steam under pressure.

This recommended practice addresses elements of a quality system, but it is not intended to provide comprehensive guidance on this subject.

Many of the activities that affect sterilization processing occur in areas separate from the location where sterilization is actually carried out. Therefore, the policies and procedures governing sterilization processing should be developed in consultation with the managers of areas that use sterile medical devices and with appropriate committees or functional groups within the facility (e.g., infection prevention and control, safety, hazardous materials, risk management). In addition, the support of the facility's administration is vital, especially in those facilities where the establishment of a quality system to implement steam sterilization process validation and parametric release is being considered.

It might not be possible for a health care facility to implement all the provisions of this recommended practice because of environmental restrictions and/or limitations in capital funding. However, it is recommended that the health care facility's administration be made aware of any current deficiencies so that the allocation of needed resources can be planned.

This recommended practice encompasses steam sterilization in all health care facilities, including ambulatory-care and office-based facilities. It covers steam sterilization by both the wrapped and unwrapped (flash) methods and provides detailed guidance on decontamination and packaging, with special reference to rigid sterilization container systems.
Steam sterilization in office-based, ambulatory-care medical, surgical, and dental facilities:

Advances in medical, surgical, and dental practice have led to the increased use of alternative health care sites, such as offices, ambulatory-care clinics, and similar clinical settings; many such facilities use small table-top steam sterilizers. Office-based practices can differ greatly from hospitals in their physical design and in the training level of personnel. The general concepts in this recommended practice apply to these settings. In some sections, processes or equipment used most frequently within the office-based and ambulatory setting are specifically addressed.

Flash sterilization:

A flash sterilization cycle is one that has been designed to meet the following criteria:

a) The cycle is preprogrammed to a specific time-temperature setting established by the manufacturer on the basis of the type of sterilizer control (i.e., gravity-displacement, dynamic-air-removal) and selected by the user on the basis of the medical device manufacturer’s written instructions for use (IFU) and the load configuration (i.e., the presence or absence of porous materials).

b) The items to be processed are usually unwrapped, although a single wrapper may be used in certain circumstances if the sterilizer or packaging manufacturer’s written IFU permit. Some rigid sterilization container systems have been designed and validated by the container manufacturer for use with flash cycles.

c) Because drying time is not usually part of a preprogrammed flash cycle, the items processed are assumed to be wet at the conclusion of the cycle.

d) The processed items(s) must be transferred immediately, using aseptic technique, from the sterilizer to the actual point of use, usually the sterile field in an ongoing surgical procedure. Regardless of whether the items are wrapped, there is no storage or shelf life of flash-sterilized items because of the higher probability of contamination after the sterilizer door is opened and the items are removed.

It is essential for health care personnel to properly carry out the complete multistep process (including decontamination and preparation) when flash sterilization is used, just as in the case of items to be processed using wrapped-goods sterilization cycles. In any method of sterilization, it is important to adhere to good processing practices. Such practices are particularly important in flash sterilization because of the difficulties associated with the aseptic delivery of devices sterilized by this method to the point of use. When performed correctly, flash sterilization is safe and effective for the sterilization of medical devices intended for use in contact with compromised tissue or the vascular system, as might occur during surgery or obstetrical delivery. The exposure times used in flash sterilization cycles are capable of producing appropriate lethality.

Several concerns stimulated the development of guidelines for flash sterilization. First, the committee was aware of inadequate cleaning and other decontamination processes in flash sterilization. Reduction of bioburden and removal of gross soil are essential steps in preparing an item for sterilization by any method. Decontamination procedures are also designed to protect the worker.

Second, documentation of the flash sterilization process is necessary and should be consistent with the requirements applicable to and the practices used in documenting the routine processing of wrapped loads.

Third, flash-sterilized items should be transported to the point of use in such a way that the potential for contamination is minimized. In deciding on transport techniques for a particular situation, personnel should consider the possible ways in which the items could become contaminated and the safety of workers handling the hot, wet, and possibly heavy trays. Contamination is an event-related process, with the probability of an event that could result in contamination increasing over time. When opened to the air, all sterile items will eventually become contaminated unless opened within and kept in a true HEPA-filtered, laminar-air-flow unit. Thus, any item that is opened and left on the back table of a surgical setup can become contaminated by particles settling on it. The longer an item is open, the greater the number of particles, with their accompanying microbiological flora.

The risk of contamination of flash-sterilized items increases if they are transported through areas where personnel are scrubbing or washing their hands, creating splashing or aerosolization. Transport through areas where air flow is not filtered to the degree present in the operating room (OR) can also increase the rate of contamination. Practitioners should examine their own situations and develop practices to minimize contamination. Some facilities are placing flash sterilizers as close to the intended point of use as can be reasonably accomplished, using rigid sterilization container systems that have been specifically validated and
labeled for use in flash sterilization, using the single-wrapper technique in appropriate cycles, and aseptically placing a sterile covering completely around the sterilized item as it is removed from the sterilizer.

Finally, flash sterilization of instrumentation should be considered only if all the following conditions are met:

- a) Work practices ensure proper cleaning and decontamination, inspection, and arrangement of instruments into the recommended sterilizing trays or other containment devices before sterilization.
- b) The physical layout of the department or work area ensures direct delivery of sterilized items to the point of use (e.g., the sterilizer opens into an area either within or directly adjacent to the procedure room).
- c) Procedures are developed, followed, and audited to ensure aseptic handling and personnel safety during transfer of the sterilized items from the sterilizer to the point of use.
- d) The item is needed for use immediately following flash sterilization.

Implantables should not be flash-sterilized (CDC, 2008). The possible consequences to the patient from placing even a minimally contaminated device in an essentially avascular environment and leaving it there at the conclusion of the procedure are potentially severe. Although the risk of an unrecognized sterilization failure can be minimized if the physical parameters of time, temperature, and pressure are monitored and recorded and the results examined after each cycle, it is recommended that health care personnel quarantine implantable devices and await the outcome of biological monitoring of the cycle before releasing these items for use. Current technology allows for release of loads, even those containing implants, upon obtaining results from the early readout mechanism of a BI designed and labeled for such use. However, this technology does not solve the problems associated with using flash sterilization for implants. Concerns about aseptic transfer remain, especially if the sterilizer does not open directly into the room containing the sterile field where the device will be used or into an area either within or directly adjacent to the procedure room. Careful planning, appropriate packaging (e.g., packaging that allows the user to see the device for sizing and verification of features), and inventory management in cooperation with suppliers can eliminate the need to flash sterilize implantable items. This is a goal that all health care facilities should strive to achieve.

Decontamination:

All microorganisms in health care facilities should be considered potentially pathogenic. Their ability to produce an infection or disease process depends on several factors, including the number and virulence of infectious organisms, the presence of a portal of entry, and the susceptibility of the host (see Annex B). Medical devices, instruments, and equipment used in patient care become contaminated with microorganisms and must be decontaminated.

Decontamination is the process by which medical devices, instruments, and equipment are rendered safe for personnel to handle. In some cases, the decontamination process is sufficient to render the items safe for reuse in patient care. The type and level of decontamination required is determined by the circumstances of device use, the type of patient contact, and the likelihood of biological hazard to personnel.

Infection prevention and control is enhanced when (a) soiled supplies and equipment are correctly and safely handled, and (b) reusable medical items are thoroughly cleaned. Whenever cleaning is not sufficient to render an item safe for personnel handling, the item is subjected to a subsequent micobical process that has been designed to provide an appropriate level of microbial lethality (kill). This process could be a disinfection process or a sterilization process. The micobical process might not be effective if soil has not been first removed by cleaning. When used for decontamination purposes, a micobical process does not necessarily make an item safe for patient use, because the level of microbial kill might not be sufficient for the intended use (as in the case of surgical instruments needed for sterile procedures).

Adherence to the principles of infection prevention and control will help prevent the spread of potentially infectious or disease-producing microorganisms from one person to another and will help ensure that all items are safe for handling during inspection, assembly, preparation, and packaging. In addition, adherence to these principles is one of the essential factors in achieving effective terminal sterilization processing, when appropriate for a particular reusable item.

The selection of an appropriate decontamination method is complex because of the huge variety of reusable items and the wide range of processes for achieving various levels of decontamination. There are diverse and often conflicting recommendations for handling supplies and equipment and for controlling biological hazards through decontamination methods. These diverse recommendations have been provided to health care
personnel by professional organizations, government agencies, manufacturers of decontamination products and equipment, medical device manufacturers, consultants, and educational speakers. There is clearly a need for consensus guidelines, with supporting rationale, for decontamination processing techniques.

The objectives of the guidelines provided in this recommended practice are to (a) help reduce the risk of cross-infection by pathogenic microorganisms to patients, personnel, and other persons; (b) assist in the development of decontamination procedures that are based on knowledge and scientific data; and (c) help ensure that all reusable medical devices are handled, transported, cleaned, biologically decontaminated, and reprocessed or examined under the best possible conditions for maximum safety.

Rigid sterilization container systems:

This recommended practice provides detailed guidelines on the selection and use of rigid sterilization container systems intended for use in steam sterilization. These systems serve as packaging for items before, during, and after sterilization. They may also be used to contain and transport contaminated items after use. Special considerations apply to these packaging systems to ensure adequate sterilant penetration and air removal.
1 Scope

1.1 General

This recommended practice provides guidelines for decontamination and steam sterilization processing in hospitals and other health care facilities. These guidelines are intended to promote sterility assurance and to assist health care personnel in the proper use of processing equipment.

NOTE—For purposes of this recommended practice, “health care facilities” means hospitals, nursing homes, extended-care facilities, free-standing surgical centers, clinics, and medical and dental offices. For convenience, the term “hospital” is sometimes used in this recommended practice; in all instances, this term should be taken to encompass all other health care facilities.

1.2 Inclusions

This recommended practice specifically addresses

a) functional and physical design criteria for sterilization processing areas;

b) staff qualifications, education, and other personnel considerations;

c) processing recommendations;

d) installation, care, and maintenance of steam sterilizers;

e) quality controls and

f) quality process improvement.

Definitions of terms, a bibliography, and informative annexes also are provided in this recommended practice.

1.3 Exclusions

This recommended practice does not cover

a) specific construction and performance criteria for steam sterilizers (see ANSI/AAMI ST8 and ANSI/AAMI ST55), rigid sterilization container systems (see ANSI/AAMI ST77), or rigid, protective organizing cases that require wrapping before sterilization (see ANSI/AAMI ST77);

b) the use of containment devices for packaging items other than instrument sets or procedural trays;

c) procedures and techniques for handling and laundering contaminated reusable surgical textiles (see ANSI/AAMI ST65), reusable laboratory items, food service items, and items assigned to a patient for the length of stay (e.g., bedpans, thermometers);

d) decontamination of hemodialysis machines, hemodialyzers, and hemodialyzer blood tubing (see ANSI/AAMI RD5, ANSI/AAMI RD47, and ANSI/AAMI/ISO 8638, respectively);

e) the use of dry heat for decontamination purposes or for terminal sterilization of reusable medical devices (see ANSI/AAMI ST40);

f) the use of ethylene oxide sterilization in health care facilities for other than decontamination purposes (see ANSI/AAMI ST41);

g) the use of chemical sterilization and high-level disinfection in health care facilities for other than decontamination purposes (see ANSI/AAMI ST58);

h) the reprocessing of devices labeled for single use only (see Food and Drug Administration [FDA], 2000c).

NOTE—For more information on the subjects excluded from the scope of this recommended practice, and for additional background information on the inclusions, refer to the references listed in Annex O.